Posts

Pickle Juice for Cramps: Does It Work?

Medically reviewed by Katherine Marengo, LDN, RD, specialty in nutrition, on September 12, 2019m| Written by Adrian White

What does pickle juice have to do with cramps?

Pickle juice has become a popular remedy for leg cramps over the years — specifically for the cramps runners and athletes get after a workout.

Some athletes swear by it, attesting that pickle juice really works. Still, the science behind it is unclear.

On the one hand, skeptics have doubted that pickle juice works for leg cramps at all. There’s no solid scientific reason yet proving how it works, so some write it off as a placebo effect.

On the other hand, some research suggests that pickle juice is way more effective than a placebo. However, it’s still unclear why.

One long-standing theory for how pickle juice works is its sodium content. The juice contains salt and vinegar, which may help replenish electrolytes. But is this actually true?

Keep reading to learn more.

Does it actually work?

Because pickle juice is such a widely used remedy for leg cramps in the sports world, there’s been some research and studies investigating its effects — though not much.

Very few studies fully explain or prove how it works. Nor do they explain how it doesn’t work, or how it’s just a placebo effect. To date, the efficacy of pickle juice is still uncertain.

Some have theorized that pickle juice’s electrolytes prevent leg cramps after exercise — but one study in 2014 debunked this.

After checking blood plasma levels of nine healthy men for signs of increased electrolytes following consumption of pickle juice after exercise, researchers found that electrolyte levels remained the same.

They also stayed level no matter what the study participants drank: water, sports drinks, or pickle juice. This is because it takes a lot longer for electrolytes to be fully absorbed into the body, and long after a muscle cramp would come and go.

The same set of researchers also did a test on pickle juice for cramps earlier in 2010. They found that it did work to shorten cramp duration. On average, it relieved cramps in about 1.5 minutes, and 45 percent faster than when nothing was taken after exercise.

Cramp relief also had nothing to do with placebo effect. This led to the more intense exploration of pickle juice’s effects on electrolyte levels later in 2014.

How to use pickle juice for cramps

In studies where pickle juice was effective for muscular cramps, researchers used about 1 milliliter per kilogram of body weight. For the average study participant, this was somewhere between 2 to 3 fluid ounces.

To use pickle juice for muscular cramps, measure out the pickle juice and drink it quickly. Taking a rough “shot” is also acceptable.

You can use pickle juice from store-bought cucumber pickles or safely fermented homemade pickles, if you desire. Make sure the natural vinegar acids and salts are present. It also doesn’t matter if the pickle juice was pasteurized or not.

Because it’s thought that cramp relief comes from the vinegar specifically, avoid watering the juice down. Drink it raw and experience the taste. However, this may be difficult for some people who don’t enjoy the taste so much.

The science behind why it works

While it hasn’t been proven yet, researchers posit that pickle juice may help cramps by triggering muscular reflexes when the liquid contacts the back of the throat.

This reflex shuts down the misfiring of neurons in muscle all over the body, and “turns off” the cramping feeling. It’s thought that it’s specifically the vinegar content in pickle juice that does this.

Still, more research is needed to prove if this is exactly how pickle juice works to prevent cramps. While there are no studies proving that pickle juice doesn’t work, or that it’s a placebo, more research supports that it does indeed work by this mechanism.

Does it have to be pickle juice?

Over time, pickle juice has been unique and popular in the way it helps with muscle cramps. Thus far, there haven’t been many other natural foods or remedies to rival it.

Foods of a similar vein haven’t been studied as much as pickle juice for cramps. But they could be just as good.

Could you eat a pickle and have the same effect? Scientifically speaking, maybe.

As researchers supposed in 2010, the cramp relief may have more to do with the vinegar content. If you eat a pickle brined with vinegar, it might also work.

However, eating a pickle isn’t as well-studied as pickle juice.

What about other similar fermented products? Liquids like sauerkraut juice, kimchi juice, apple cider vinegar, and even kombucha are similar to pickle juice. Some have both vinegar and salt content, while others have just vinegar content.

Following the vinegar theory, these may also work. They just haven’t been studied or tested like pickle juice has.

There’s no harm in giving them a try if you consider any of the possible side effects beforehand.

What should I know before using pickle juice?

Some doctors and health professionals warn that pickle juice could possibly worsen dehydration. They say it curbs thirst when you drink it, but doesn’t rehydrate like water.

According to both the 2010 and 2014 studies, this isn’t true. Pickle juice won’t dehydrate you, and it doesn’t curb thirst. It’ll also rehydrate you just as much as water, another similar study in 2013 suggests.

If small amounts are taken — such as 2 to 3 fluid ounces occasionally — there should be little to no health or dehydration concerns.

Pickle juice tends to have a lot of salt, and is thus high in sodium. People with high blood pressure and those who are watching dietary sodium may want to be careful not to take too much pickle juice and use it only occasionally.

Pickles, especially homemade, have high levels of probiotics for gut health and immune system function.

Be careful taking it if you have digestive ailments or disorders. Some pickle juices are high in acetic acids, which can worsen certain symptoms. There are also some other possible side effects, too.

The bottom line

The verdict thus far is that pickle juice can work for leg cramps after exercise. Though there isn’t a whole lot of research on it, the studies so far are quite supportive.

Use of pickle juice to occasionally get rid of cramps post-exercise should also generally be quite safe. If you have any concerns, talk to your healthcare provider before using it.

Originally Published: https://www.healthline.com/health/pickle-juice-for-cramps

Dr. Oz Logo

Health Secrets Dr. Oz Only Tells His Friends

Dr. Oz’s 1-Ingredient Hangover Cure

Pickle juice! After a long night of drinking your body is zapped of water and electrolytes, which is why you get headaches, dizziness and cramping. The salts in pickle juice will help replenish your electrolytes and put your body back in balance. Dr. Oz recommends 1/4 cup first thing in the morning to help ease a hangover.

Originally Published: https://www.doctoroz.com/slideshow/health-secrets-dr-oz-only-tells-his-friends?gallery=true&page=2

Science be damned, football players are drinking pickle juice to try to ward off cramps

Washington Post | Sports | High School Sports
By: Jacob Bogage September 22, 2016

That bottle doesn’t have water in it. Or Ga­tor­ade. Or anything you might want to chug down.

There is, instead, pickle juice: briny and sour with seeds floating to the top, acidic enough to sting the back of your throat and make you reevaluate the decision to drink it.

Thirsty? Not anymore.

And yet football teams nationwide — from high schools into the college and professional ranks — are keeping pickle juice on their benches and in their cafeterias to ward off cramps and fight dehydration, regardless of the lack of science demonstrating its efficacy.

Lackey High School running back Malik Burns couldn’t get enough of the stuff after a broiling night game earlier this season.

“It was very hot outside, so when [my coach] said something about the pickle juice, I went for it,” he said. “It tasted pretty good, and it helped out a lot. That was one of the first games where I didn’t cramp.”

Coaches and athletes alike have sworn by it for decades, pointing to its sodium content as a way to help retain moisture and electrolytes.

“Most athletes walk around in a dehydrated state,” said Randy Bird, director of sports nutrition at the University of Virginia. “It’s not an acute problem; it’s a gradual problem throughout the week. So Monday they practice and don’t properly hydrate, and Tuesday they do it again. And then, bam, it’s Saturday, and they’re very dehydrated.”

Coaches and nutrition specialists have turned to all kinds of remedies to keep athletes hydrated and stocked up on electrolytes.

The University of Maryland football team passes out pickle juice to players as a post-practice refreshment.

A manager on the Lackey team is in charge of a three-gallon jug of kosher dills and keeps a squirt bottle full of the juice. Trainers keep mustard packets on the sideline for players to gulp down during stoppages.

Bullis Coach Pat Cilento switched two years ago from pickle juice to apple cider vinegar. Players get a shot of it in a Dixie cup on Thursdays and two more on Fridays. During Cilento’s one-year stint at Sherwood, in 2009, the Warriors kept a bottle of pickle juice on the sideline during games. Upperclassmen would toss the bottle to underclassmen as a prank during timeouts.

“Normally we would put tape around it so everyone would know, but then they would rip the tape off,” Cilento says now with a laugh. “They knew what they were doing.”

But the actual impact of pickle juice — or any kind of salty fluid — is less well known.

“It’s definitely been something that’s been around for a while,” said Colleen Davis, director of sports nutrition at Maryland. “But the biggest thing as a dietitian is thinking about more than one thing. I don’t think pickle juice is a sole factor in preventing or alleviating cramps.”

And there isn’t any science that says pickle juice or vinegar or mustard packets prevent cramps, Bird said.

Cramps are caused by a lot of things, such as dehydration, an electrolyte imbalance or a lack of carbohydrate fuel. Some cramps are even caused by hiccups in the nervous system that cause muscles to get stuck in the “on” position, Bird said.

But a 2010 study conducted by researchers at North Dakota State and Brigham Young universities found that ingesting pickle juice right before or during a game doesn’t have much of an effect. The extra sodium that might ward off a cramp doesn’t reach the blood stream in time to be preventative. And athletes drink such a small amount of the stuff that it’s not enough sodium to really make a difference regardless.

In other words, those shots of apple cider vinegar and the mustard packets may be more torture than they are helpful.

But the acid found in the pickle juice, vinegar and mustard does help alleviate cramps, the study concluded. A cramp induced by researchers lasted two minutes on average. Those cramps lasted 30 seconds shorter when test subjects drank pickle juice during the experiment. When subjects drank water, there was no change.

Researchers argue that the acid in the liquid reacts with nerves in your throat that somehow calm your cramping muscle in less than a minute.

Science aside, though, coaches across the area still turn to the liquid to keep their players on the field — and figure to continue to.

Friendship Collegiate linebacker-fullback Hassan Terry felt a cramp in his right calf earlier this month during a game against Carroll. As the Knights’ trainer tended to Terry on the sideline, the trainer shouted to the bench: “Get the pickle juice!”

Originally Published: https://www.washingtonpost.com/sports/highschools/science-be-damned-football-players-are-drinking-pickle-juice-to-try-to-ward-off-cramps/2016/09/22/fe60fa50-7b65-11e6-bd86-b7bbd53d2b5d_story.html

Why Every Athlete Should Have Pickle Juice

By Kelli Jennings For Active.com

Muscle cramps can bring even the strongest athlete to his or her knees. And while, there are a number of theories as to what causes cramps—including hydration, bike fit, form and electrolytes—they seem to happen more in races than in training.

Despite the lack of answers as to why cramps occur, a number of remedies have cropped up in recent years. Some of them are probably already in your pantry.

The Research

Research, as far back as several decades ago and as recently as 2013, suggests pickle juice relieves cramps. In the 2013 study, cramps lasted about 49 seconds less when participants drank pickle juice rather than water.

The first assumption is that fluids and sodium are anti-cramping agents.  However, other studies have concluded that the plasma volume and plasma concentrations of sodium remain unchanged after pickle juice consumption, leading researchers to believe something else is causing the cessation of the cramps.

Most experts think it’s the vinegar.

It’s believed that the vinegar triggers a reflex that alerts our brains to tell our muscles to stop contracting and relax, and the muscle cramping is reduced as soon as the vinegar touches receptors in the mouth.

Bring a small amount of pickle juice with you on your next training session (2 ounces is usually enough) or try the Pickle Juice Sports Drink.

Mustard contains vinegar in smaller, but potentially effective amounts as well. However, it has not been as well studied as pickle juice. Packets of yellow and honey mustard are portable on the trail or road, and often easier to consume than pickle juice. Mustard has up to 100 milligrams of sodium per packet and also contains turmeric, which is helpful for muscle soreness and inflammation.

Beyond the cramps, pickle juice and mustard provide other benefits for athletes:

Sodium: Adequate intake can improve hydration and reduce cramping, at least in practice. Just 1 tablespoon of mustard has 200 milligrams sodium and 2 ounces pickle juice has more than 400 milligrams sodium. Just 2 ounces of the pickle juice sports drink has about 225 milligrams sodium.

Glycogen Replenishment: Vinegar, which is chemically known as acetic acid, can provide the acetyl group. This is a fundamental building block for the Krebs Cycle and helps to metabolize carbohydrates and fat to produce energy and ATP for cells. 

If you’re prone to cramps bring a bottle of pickle juice or packet of mustard to your next training session or race. Consume them at the first sign of cramps and you might be able to keep training or racing and full speed.

Kelli Jennings, RD and sports nutritionist, is the owner of Apex Nutrition, LLC.

Originally Published: https://www.active.com/nutrition/articles/why-every-athlete-should-have-pickle-juice

Why Runners Should Drink Pickle Juice

You’ve seen others doing it and cringed—but there are good reasons this salty beverage it make its rounds

By Fara Rosenzweig | 01/07/2016

Move over coconut water, there’s a new beverage taking center stage: pickle juice.

Yes, pickle lover’s rejoice! You may have had to defend your love for the stuff in the past, but you may be ahead of the curve.

A number of studies have confirmed that pickle brine might be more effective than sports drinks at treating muscle cramps. One study from the Department of Health, Nutrition and Exercise Science at North Dakota State University found that athletes who drank the brine noticed the cramps were gone within 85 seconds—about 37 percent faster than water drinkers and 45 percent faster than those who didn’t drink anything at all.

“Pickle Juice Sport is an effective, all-natural recipe made with key ingredients that are scientifically proven to block the neurological signal that triggers muscle cramps,” says Filip Keuppens, Director of Sales and Marketing for The Pickle Juice Company.

The secret? Vinegar. Researchers believe that pickle juice relieves cramps because the acetic acid (vinegar) triggers a reflex shortly after ingestion, which reduces alpha motor neuron activity to cramping muscles. In other words, vinegar sends a signal to the brain to tell the muscles to stop contracting and relax.

Beyond cramping, pickle juice provides a number of other benefits for athletes.

Hydration: Runners sweat out a lot of salt. When sodium levels drop, so does your thirst, which leads to dehydration—bad news. Sipping on 2 ounces of pickle juice can provide 200 mg of sodium, which can replenish the body’s lost fluids and prevent dehydration. Those who run for more than two hours should consider sipping on pickle juice mid-run to keep hydrated.

Hangover cure: We all indulge every now and then. And we certainly regret it the next day with the pounding headache. Hangovers are a result of dehydration. As mentioned above, pickle juice provides sodium that can replenish the body, quenching our thirst. Downing pickle juice after a night of vino can help rid the dreaded headache. Combine it with water to speed up the recover.

Restore energy: After an intense workout your mind and body are depleted. Your energy levels are at a low. To give yourself a re-boost you need to restore exhausted glycogen levels (low carbohydrates). Pickle juice is rich in acetic acid, or vinegar, which can help metabolize carbohydrates to restore energy.

Originally Published: https://www.womensrunning.com/2016/01/nutrition/the-cure-youve-never-heard-of-for-muscle-cramps_52423

The science behind Pickle Juice: Reflex Inhibition of Electrically Induced Muscle Cramps in Hypohydrated Humans

For our science buffs!

Source: Medicine & Science in Sports & Exercise: May 2010 – Volume 42 – Issue 5 – p 953-961
doi: 10.1249/MSS.0b013e3181c0647e
BASIC SCIENCES
Author information: Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND; Department of Exercise Sciences, Brigham Young University, Provo, UT; and Department of Statistics, Brigham Young University, Provo, UT Address for correspondence: Kevin C. Miller, Ph.D., ATC, CSCS, North Dakota State University, Health, Nutrition, and Exercise Sciences, NDSU Dept #2620, PO Box 6050, Fargo, ND 58108-6050; E-mail: Kevin.C.Miller@ndsu.edu

Skeletal muscle cramps that occur during or shortly after exercise have been termed exercise-associated muscle cramps (EAMC). These muscle cramps are highly prevalent in athletic populations (3,8,36) and the physically active (25). In fact, 73% (102/139) of heat-related injuries experienced in American football were EAMC (8). In triathletes, 67% (1631/2438) complained of EAMC under a variety of training conditions (14). Despite their prevalence, the etiology of EAMC is unclear.

Traditionally, EAMC have been associated with fluid and electrolyte disturbances (6,32,35). Proponents of this theory hypothesize that the loss of fluids and electrolytes owing to exercise-induced sweating causes a contracture of the interstitial space, which results in mechanical deformation of nerve endings and leads to cramp genesis (4,16). This theory is based on the observation that athletes who develop EAMC often have significant fluid and electrolyte losses at the time of cramp (3,32). However, losses in plasma and blood volume, electrolytes, and body weight are often similar in individuals who develop EAMC as in noncramping individuals (18,30). In addition, EAMC can be relieved by moderate static stretching of the cramping muscles (17,30,35) or activation of Golgi tendon organs (15). Neither of these treatment strategies has any impact on fluid or electrolyte balance, yet both adequately relieve a skeletal muscle cramp.

The unclear etiology and conflicting results of observational studies regarding EAMC have resulted in several anecdotal treatments, many with little or no scientific credibility. One such treatment is the ingestion of small volumes (30-60 mL) of pickle juice, a highly salty and acidic brine. This treatment is claimed to relieve an EAMC within 35 s (38). Several athletic trainers (25%, 92/370) seem to be treating athletes who develop EAMC with pickle juice (22) despite the lack of scientific evidence of its efficacy and the warnings against its ingestion (10). Many of these health professionals attribute pickle juice’s efficacy to the high sodium (Na+) and electrolyte content (22).

We examined whether pickle juice could relieve an electrically induced muscle cramp in mildly hypohydrated humans by inducing skeletal muscle cramps with low-frequency percutaneous electrical stimulation. The ability to initiate a cramp via low-frequency activation of the alpha motor neuron (5,34) supports the hypothesis that the muscle cramp is generated peripherally, either at the level of the alpha motor neuron or motor end plate (24). This cramp induction model effectively induces skeletal muscle cramps and is generally well tolerated and reliable and has a close correlation with the occurrence of EAMC (21,33).

If pickle juice relieves an electrically induced muscle cramp, we questioned how quickly it relieved the muscle cramp and if the cessation of the cramp was associated with a change in plasma electrolyte concentration or other plasma constituents. We hypothesized that pickle juice would alleviate an electrically induced muscle cramp but that this effect would not occur within 35 s of ingestion. In addition, we did not expect any appreciable changes in plasma constituents within 5 min after ingestion.

METHODS

Subjects.

Twelve healthy, unacclimated college-aged males volunteered for this study. Two volunteers were excluded from participating because we could not induce a cramp on the first day of testing. Therefore, 10 subjects (mean ± SE, age = 23.5 ± 1.0 yr, height = 177.8 ± 1.8 cm, mass = 73.9 ± 2.8 kg) completed the study. Volunteers were excluded from participating if they 1) had experienced any lower extremity injury or surgery within the last 6 months or 2) self-reported any neurological, cardiovascular, or blood-borne diseases. All subjects had experienced EAMC within 6 months of experimentation. All procedures were approved by our university’s institutional review board, and subjects provided written informed consent. To protect against a placebo effect, subjects were not informed what they would be drinking or the beverage’s purported effects on muscle cramps.

Testing procedures.

Subjects reported for a familiarization session and two experimental trials. No data were collected on the familiarization session. This session was used to screen potential subjects to ensure that an electrically induced cramp could be induced in the flexor hallucis brevis (FHB) and that subjects could tolerate the electrical stimuli. The familiarization session occurred 24 h before the first experimental trial for all subjects.

On the familiarization day, subjects were taught how to perform a maximum voluntary isometric contraction (MVIC) with their dominant leg’s FHB by performing 15 practice MVIC. Each 2-s MVIC was separated by 1 min of rest. After the last practice MVIC, subjects rested for 15 min, and we attempted to induce a cramp in the FHB via low-frequency percutaneous electrical stimulation of the tibial nerve. If successful (see criteria in the next paragraph), EMG and stimulating electrode placements were marked for replication, and subjects were invited back the following day for the first experimental trial. Subjects were instructed to fast for 12 h before the experimental trials, to drink water consistently throughout the evening and morning before these trials, and to avoid exercising for 24 h before testing.

On the first experimental trial day, subjects reported to the laboratory and were weighed, and a venous catheter was inserted into a superficial vein in the forearm. Subjects ingested 5 mL of tap water per kilogram body weight within 5 min to help ensure hydration and lay supine for 30 min during which they were prepared for several measurements. A portion of the right midforearm was shaved in preparation for sweat patch placement. Subjects’ legs were then prepared for EMG analysis using standard preparatory procedures (34). After this equilibration period, subjects voided their bladders completely, and their urine was collected (first urine collection). Subjects were weighed and then lay supine for an additional 30 min after which they practiced performing 15, 2-s MVIC with 1 min of rest separating each contraction. After the last practice MVIC, subjects rested for 5 min and then performed three consecutive 2-s MVIC. The mean EMG activity (V) of these MVIC was recorded and averaged for statistical analysis. After 15 min of rest, subjects voided their bladders (second urine collection) and were weighed.

An HR monitor was placed on the chest (Polar Electro, Inc., Lake Success, NY). The right forearm was washed with distilled water and dried. A sterile sweat patch was placed on the forearm. Subjects then began a 30-min bout of one-leg (nondominant), semirecumbent cycle ergometer exercise at 41°C and 15% relative humidity. Subjects exercised at a moderate intensity that generated an HR between 145 and 150 bpm. After 30 min of exercise, subjects were towel-dried, weighed, and rested for 5 min. This cycle of 30-min exercise/5 min rest continued until subjects lost ∼3% of their body mass (2.1 ± 0.1 h). None of our subjects experienced EAMC as a result of the exercise protocol.

When subjects became sufficiently hypohydrated, they exited the heat chamber, voided their bladders (third urine collection), and lay supine on a treatment table for 30 min to allow body fluid compartment equilibration. Subjects’ MVIC EMG activity was reassessed. A cramp in the FHB was induced, and cramp duration and FHB EMG activity were recorded. No fluids were ingested during this cramp. Subjects were instructed to remain relaxed for the duration of the cramp and to let the cramp proceed for as long as possible. On cramp cessation, subjects voided their bladders (fourth urine collection).

Subjects lay supine for 30 min after cramp induction after which we collected a 5-mL blood sample (baseline). Subjects then sat up slightly to facilitate fluid ingestion. The primary investigator and subject donned nose plugs to prevent discovery of the drink composition. Subjects were instructed to allow the upcoming cramp to persist as long as possible, not make any sounds, gestures, or facial expressions after fluid ingestion, which may have notified the primary investigator of the contents of the water bottle, and to wait until signaled to ingest the treatment fluid. A cramp was then induced at the same frequency and parameters that had been used to induce the first cramp (e.g., stimulation frequency, intensity). The primary investigator verified cramping (2 s after cramp induction) and then signaled to the subjects to ingest 1 mL·kg−1 body weight of either pickle juice or deionized water. They drank the fluid as quickly as possible (3-5 s). At 1 and 5 min after ingestion, 5-mL blood samples were collected. After collection of the last blood sample, subjects voided their bladders (fifth urine collection) and were excused. Each subject completed two identical experimental trials separated by at least 1 wk. The two trials differed only by the composition of the fluid ingested during the electrically induced muscle cramp: pickle juice or deionized water. No other fluids were ingested at any other point by the subjects during experimentation.

Subjects were instructed to not drastically alter their diet and activity level the week in between experimental trials and to remark the locations of the EMG and stimulating electrodes if they noticed the marks were fading during the course of the week. Compliance of these instructions was assessed via a diet/exercise log on the final day of testing.

We collected the pickle juice by straining it from commercially available sliced dill pickles (Vlasic Pickles, Pinnacle Foods Corp., Cherry Hill, NJ). Both treatment fluids were kept in sealed, unmarked, opaque containers and chilled in a refrigerator at 3°C until needed. A research assistant prepared each drink after the first body weight measurement, so both the subject and primary investigator were blinded to its contents. Drink order was randomized and counterbalanced.

Muscle cramp induction and determination criteria.

Skeletal muscle cramps induced with this low-frequency, percutaneous electrical stimulation model have both high intrasession (intraclass correlation coefficients (ICC) [3,1] > 0.844) (34) and intersession reliability (ICC [3,1] > 0.963) (20,34). Scientists have used this model to investigate the effects of various interventions (31,40) as well as their correlation with EAMC (21,33).

Subjects lay supine with their dominant ankle hanging off a table and were instructed to relax for the duration of testing. Standard EMG preparatory procedures (34) were performed at the medial plantar aspect of the foot, at the area around the medial malleolus, and at the ipsilateral tibial tuberosity. An 8-mm Ag-AgCl stimulating electrode was placed slightly inferior to the medial malleolus. The tibial nerve was submaximally stimulated two to four times with 1-ms electrical stimuli at 80 V to determine the site around the medial malleolus that caused the greatest hallux flexion. An 8-cm square dispersive electrode was placed over the lateral malleolus. Electrodes were secured with medical tape and an elastic wrap at these locations. Two EMG measurement electrodes were placed 2 cm apart over the midbelly of the FHB with a single-ground measurement electrode over the ipsilateral tibial tuberosity.

The compound muscle action potentials of the FHB were sampled at 2000 Hz and filtered (band-pass low-frequency = 10 Hz and high-frequency = 500 Hz) using the MP150 analog-to-digital system and operated by AcqKnowledge v3.7.3 software (Biopac Systems, Santa Barbara, CA). Disposable long-term recording electrodes (EL502-10; Biopac) were used to collect EMG data. The total EMG recording consisted of baseline (1 s), stimulation (2 s), and poststimulus activity (5 min).

A Grass S88 stimulator with SIU5 Stimulus Isolation Unit (Astro-Med, Inc., West Warwick, RI) with an 8-mm Ag-AgCl shielded active electrode (EL258S; Biopac) and an 8-cm square dispersive electrode was used to deliver the train of electrical stimuli to the tibial nerve. Stimulus intensity and duration were set at 80 V and 2 s, respectively, because this intensity and duration have been shown to induce muscle cramps in healthy subjects (20). Subjects received two consecutive trains of electrical stimuli (one train per second; no rest intervals between trains) beginning at a train frequency of 4 Hz (eight total stimuli on the first trial). If a cramp did not occur at 4 Hz, subjects rested for 1 min, and train frequency was increased by 2 Hz. This process continued until the FHB cramped.

A muscle cramp was defined as an involuntary painful contraction of the FHB immediately after stimulation and was verified by involuntary sustained great toe flexion, subject verification that a cramp had occurred, and an average EMG root mean square amplitude >2 SD above the 1-s baseline EMG average root mean square amplitude (34). Also, induced cramps must have lasted ≥90 s, and cramp intensity must have been approximately 50% of MVIC EMG activity. The stimulation frequency required to induce cramps with the previously mentioned criteria was termed the minimal treatment frequency (MFtrt). This is not to be confused with “cramp threshold frequency” that has been reported in previous studies and is defined as the minimal electrical stimulation frequency (Hz) required to elicit mild and short-lasting (i.e., <10 s) cramps (20,21,34).

The FHB EMG activity during each cramp was recorded until it seemed to return to resting activity. The filtered and rectified EMG measurements were saved and placed into an algorithm that calculated cramp duration. Cramps were considered alleviated when the cramp EMG activity was <2 SD above baseline EMG activity. Cramp intensity (%) was calculated by dividing the 2 s of cramp EMG activity immediately after the end of the electrical stimuli by MVIC EMG activity and multiplying by 100.

MVIC EMG activity determination.

The dominant legs’ big toe was placed in a toe harness that was attached to a strain gauge rated for loads <11 kg and calibrated with a 4-kg weight. Four-centimeter nylon straps were tightened over the subject’s midthigh and shin to prevent movement of the hip and knee. The subject’s dominant ankle was placed in a foam block with a foot pad at 120° to keep the ankle in slight plantarflexion and to prevent the ankle from extreme inversion and eversion (Fig. 1). The subjects were instructed to keep the plantar aspect of their foot against this foam block when performing their MVIC. The compound muscle action potentials of the FHB during MVIC were sampled using similar parameters as described above for FHB cramps.FIGURE 1

Gastrocnemius muscle activity was monitored with a biofeedback unit (Pathway TR-10C; Prometheus Group, Dover, NH) to ensure that the subjects were not producing force by using the incorrect muscles. Gastrocnemius EMG activity exceeding 8 mV constituted a failed MVIC attempt. If subjects performed an MVIC incorrectly, they rested for 1 min and then reattempted the contraction. These settings have been used successfully in previous experiments (unpublished observations).

Blood analysis procedures.

Five-milliliter blood samples were collected before and at 1 and 5 min after ingestion of each fluid. One milliliter of blood from each sample was used to analyze hematocrit (Hct) and hemoglobin (Hb; 0.5 mL for each); the 4 mL of blood remaining was sealed and stored in a 6.0-mL lithium heparin vacutainer (BD, Franklin Lakes, NJ) and placed into an ice bath until the last blood sample was collected.

Blood for Hct analysis was drawn into heparinized microcapillary tubes and centrifuged at 3000 rpm (IEC Micro-MB; International Equipment, Co., Needham Heights, MA) for 5 min and read using a microcapillary reader (Model IEC 2201; Damon/IEC, Needham Heights, MA). Hemoglobin concentration ([Hb]) was measured by mixing 20 µL of whole blood with 5 mL of cyanomethemoglobin reagent, and the absorbance was read at 540 nm on a standard spectrophotometer (Smartspec 3000; Bio-Rad, Hercules, CA). Hct and [Hb] were measured in triplicate immediately after sampling and averaged for each blood sample for statistical analysis and calculations. Hct and [Hb] measurements were used to calculate changes in plasma volume (PV) per the Dill and Costill equation (11).

The remaining 4 mL of blood was centrifuged at 3000 rpm for 15 min at 3°C (Eppendorf Centrifuge 5403; Eppendorf North America, Inc., New York, NY). Plasma was removed from the packed red blood cells, and plasma sodium concentration ([Na+]p), plasma potassium concentration ([K+]p), plasma magnesium concentration ([Mg2+]p), and plasma calcium concentration ([Ca2+]p) were analyzed using an ion-selective electrode system (NOVA 8 electrolyte analyzer; Nova Biomedical, Waltham, MA). Plasma osmolality (OSMp) was determined using freezing point depression osmometry (Model 3D3 Osmometer; Advanced Instruments, Inc., Norwood, MA). Plasma electrolyte concentrations and OSMp were measured in duplicate and averaged for statistical analyses. An OSMp of ≥290 mOsm·kg−1 H2O was used to indicate hypohydration (28).

Sweat analysis procedures.

Sweat patches were collected after 45 min of exercise. Sweat was separated from the sterile patches via centrifugation and analyzed in duplicate with an ion-selective electrode analyzer for sweat sodium concentration (Sw[Na]), sweat potassium concentration (Sw[K]), sweat magnesium concentration (Sw[Mg]), and sweat calcium concentration (Sw[Ca]). Whole-body sweat rate (L·h−1) was calculated by subtracting postexercise body weight from preexercise body weight and dividing by total exercise duration (1 kg of body mass lost represented 1 L of fluid lost). Total sweat electrolytes lost (mmol) were estimated by multiplying electrolyte concentration (mmol·L−1) by total sweat volume (L).

Urine analysis procedures.

Urine volume was measured using appropriately sized graduated cylinders. Urine sodium concentration (U[Na]), urine potassium concentration (U[K]), urine magnesium concentration (U[Mg]), and urine calcium concentration (U[Ca]) were measured in duplicate using an ion-selective electrode system. Urine electrolyte content (mmol) was calculated by multiplying urine volume (L) at each sampling point by electrolyte concentration (mmol·L−1). Total urinary electrolytes lost were determined by adding the electrolytes lost at each time point.

Fluid analysis procedures.

Pickle juice and deionized water were analyzed for [Na+], [K+], [Mg2+], [Ca2+], pH, and osmolality in duplicate and averaged for statistical analysis. Electrolytes were analyzed using an ion-selective electrode analyzer. Fluid pH was measured with a pH meter (AR15; Fisher Scientific, Pittsburgh, PA). Osmolality was measured by freezing point depression osmometry.

Statistical analysis procedures.

Data are presented as means ± SE. To determine the effects of pickle juice and deionized water ingestion on cramp duration, we used an ANCOVA with MFtrt and cramp intensity as covariates. Because the covariates were insignificant, we removed the covariates from the analysis and used a 2 × 2 repeated-measures ANOVA. The cramp duration after the dehydration protocol (i.e., no fluid ingested) was compared with the cramp duration after ingestion of each drink using repeated-measures ANOVA. Similarly, the intensity of the cramps induced when subjects ingested each fluid and the MFtrt was compared with a repeated-measures ANOVA.

Mean plasma, sweat, and urine electrolyte concentrations and contents, osmolality, and volume were analyzed with a 2 × 3 repeated-measures ANOVA (fluid and time) to assess differences between fluids over time for these variables. Because the fluid × time interaction was insignificant for all variables but several time effects were significant, we reexamined each fluid trial separately using a one-way ANOVA for repeated measures on time and used the Tukey-Kramer post hoc multiple-comparison test to identify which time points were different from baseline. All statistical analyses were performed with Number Cruncher Statistical Software (NCSS 2007, Kaysville, UT). Significance was set at P ≤ 0.05.

RESULTS

Effects of deionized water and pickle juice ingestion on electrically induced muscle cramps.

Subjects self-reported compliance with testing instructions before each experimental day. Cramp duration, intensity, and MFtrt data before and after fluid ingestion can be found in Table 1. Cramp duration (F1,9 = 0, P = 0.95), cramp intensity (F1,9 = 0.85, P = 0.4), and MFtrt (F1,9 = 1.2, P = 0.3) were similar during the initial cramp induction before each fluid’s ingestion. During muscle cramp induction combined with fluid ingestion, cramp intensity was again similar between fluids (F1,9 = 3.1, P = 0.11). Also, compared with before ingestion, cramp intensity was not different after ingestion of pickle juice (F1,9 = 0.1, P = 0.79) and deionized water (F1,9 = 0, P = 0.96).TABLE 1

Cramp duration was 49.1 ± 14.6 s shorter after pickle juice ingestion than after deionized water ingestion (F1,9 = 11.3, P = 0.008). Moreover, cramp duration after ingestion of pickle juice was 68.6 ± 23.2 s shorter than before ingestion (F1,9 = 8.7, P = 0.02). In contrast, ingesting deionized water did not significantly affect cramp duration compared with before ingestion (F1,9 = 4.1, P = 0.1).

Fluid composition.

Subjects ingested 73.9 ± 2.7 mL of pickle juice and 73.9 ± 2.8 mL of deionized water. Pickle juice contained a higher [Na+], [K+], [Mg2+], and [Ca2+], had a higher osmolality, and had a lower pH than deionized water (F1,1 > 615.9, P < 0.02; Table 2). Total electrolyte content ingested was 72.4 ± 2.6 mmol of Na+, 0.5 ± 0.02 mmol of K+, 0.9 ± 0.03 mmol of Mg2+, and 1.7 ± 0.06 mmol of Ca2+ with pickle juice and 0 mmol of Na+, K+, Mg2+, and Ca2+ with deionized water.TABLE 2

Blood analysis.

Plasma osmolality did not differ between pickle juice and deionized water over time (F2,18 = 0.2, P = 0.82; Table 3). However, OSMp increased slightly over time; OSMp increased to 296.4 ± 1.2 mOsm·kg−1 H2O 1 min after pickle juice ingestion (P < 0.05) but quickly returned to baseline levels after 5 min (296.2 ± 1.4 mOsm·kg−1 H2O, P > 0.05). Similar changes occurred after deionized water ingestion, although OSMp remained elevated at 5 min after ingestion (P < 0.05). The increase in OSMp after ingestion of each fluid is likely due to a shift of hypotonic fluid out of the intravascular space rather than to an increase in osmoles because of fluid ingestion. This hypothesis was confirmed by the small, but significant, decreases in PV after ingestion over time (F2,18 = 13.15, P < 0.001). However, no differences in PV occurred between pickle juice and deionized water over time (F2,18 = 0.14, P > 0.05), and PV returned to baseline 5 min after ingestion of each fluid (P > 0.05; Table 3).TABLE 3

Despite pickle juice having a significantly higher electrolyte content than deionized water, there were no significant differences between fluids after ingestion for [Na+]p (F2,18 = 1.26, P = 0.31), [K+]p (F2,18 = 0.14, P = 0.87), [Mg2+]p (F2,18 = 0.39, P = 0.68), or [Ca2+]p (F2,18 = 0.06, P = 0.94; Table 3). However, deionized water ingestion resulted in a small increase in [Na+]p at 1 min after ingestion (P < 0.05), which returned to baseline after 5 min (P > 0.05). This increase in [Na+]p is also likely due to the decrease in PV rather than to an increase in Na+ content in the intravascular space. Contrastingly, [K+]p decreased over time (F1,9 = 15.09, P < 0.001) and was significantly lower at 5 min after ingestion for both pickle juice and deionized water (P < 0.05) but was not outside normal clinical values. No changes in [Mg2+]p or [Ca2+]p occurred between drinks (F1,9 < 1.11, P > 0.32) or up to 5 min after ingestion of pickle juice or deionized water (F2,18 < 1.98, P > 0.17).

Exercise-induced hypohydration.

Subjects lost similar amounts of body weight (F1,9 = 0.38, P = 0.55) and were similarly hypohydrated on each experimental day (F1,9 = 0.09, P = 0.78). Thus, data were combined (n = 10). Subjects lost 3.04% ± 0.1% body weight via exercise-induced sweating, which resulted in significant hypohydration after exercise (OSMp = 295.1 ± 1.1 mOsm·kg−1 H2O).

Sweat volume and electrolyte losses.

Subjects lost similar amounts of sweat (F1,9 = 0.1, P = 0.76) and had similar Sw[Na] (F1,9 = 0, P = 0.96), Sw[K] (F1,9 = 0.1, P = 0.75), Sw[Mg] (F1,9 = 0.07, P = 0.79), and Sw[Ca] (F1,9 = 0, P = 0.99) on each experimental day. Therefore, sweat data were combined (n = 10). Subjects had an Sw[Na] of 65.9 ± 4.2 mmol·L−1, Sw[K] of 5.1 ± 0.2 mmol·L−1, Sw[Mg] of 1.5 ± 0.1 mmol·L−1, and Sw[Ca] of 1.4 ± 0.1 mmol·L−1. Subjects lost a total of 2.2 ± 0.1 L of sweat, 144.9 ± 9.8 mmol of Na+, 11.2 ± 0.4 mmol of K+, 3.3 ± 0.3 mmol of Mg2+, and 3.1 ± 0.1 mmol of Ca2+ as a result of the exercise protocol. The high Sw[Na] indicated that our subjects were unacclimated to exercising in a hot environment (1,7).

Urine volume and electrolyte losses.

Because the first and second urine samples were collected before exercise while the subjects were euhydrated, the data from these samples were combined and represent the preexercise condition. Urine sample 3 was collected immediately after the last bout of exercise and therefore represents the urine produced during exercise. Urine samples 4 and 5 were collected 90 and 120 min after exercise. Because these samples were representative of subjects in a hypohydrated state, they were combined for analysis and represent urine produced after exercise.

Subjects had similar urine volumes (F1,9 = 0.7, P = 0.43), urine flow rates (U˙, F1,9 = 0.7, P = 0.43), U[Na] (F1,9 = 3.2, P = 0.11), U[K] (F1,9 = 0.05, P = 0.84), U[Mg] (F1,9 = 0.55, P = 0.48), and U[Ca] (F1,9 = 0.47, P = 0.51) on each experimental day over time. There were also no differences between drinks (F1,9 < 3.22, P > 0.11); thus, the urine data were combined (Table 4). However, Uvol, U˙, U[Na], U[K], and U[Mg] changed over time (F2,18 >10.6, P < 0.001). Urine volume and U˙ were lower after exercise and after ingestion than before exercise (P < 0.05). Urine [Na] was higher after ingestion than during and before exercise (P < 0.05). Urine [K] increased after exercise as well as after ingestion (P < 0.05). Urine [Mg] was only elevated after ingestion compared with baseline (P < 0.05), and no changes in U[Ca] occurred during the experiment (F2,18 = 2.3, P = 0.12). Overall, subjects lost a total of 1.0 ± 0.1 L of urine, 45.1 ± 3.7 mmol of Na+, 23.7 ± 1.4 mmol of K+, 0.35 ± 0.1 mmol of Mg2+, and 0.47 ± 0.1 mmol of Ca2+ via urination.TABLE 4

Total fluid and electrolyte losses.

Overall, subjects lost a total fluid volume of 3.2 ± 0.2 L, 190.0 ± 8.1 mmol of Na+, 34.9 ± 1.6 mmol of K+, 3.7 ± 0.3 mmol of Mg2+, and 3.6 ± 0.1 mmol of Ca2+ on each experimental day.

DISCUSSION

The most significant and novel observation of this study was that ingesting small volumes (73.9 ± 2.7 mL) of pickle juice alleviated electrically induced muscle cramps in mildly hypohydrated (3%) humans. Pickle juice required approximately 85 s to alleviate muscle cramps (cramp duration after ingestion ranged from 12 to 219 s). Although this was much longer than the purported claims of pickle juice’s efficacy (38), it still relieved a cramp 45% (85 vs 153 s) faster than when no fluid was consumed. In contrast, ingesting similar volumes of deionized water had no therapeutic effect on cramp duration (cramp duration after ingestion ranged from 71 to 246 s). Discrepancies between anecdotal claims of pickle juice’s efficacy and our data may be because of the type of cramp alleviated (EAMC vs electrically induced muscle cramps) or errors by these clinicians (38) in their estimation of cramp duration.

The rapidity with which pickle juice relieves electrically induced muscle cramps likely cannot be attributed to spontaneous cramp cessation, weakness of the induced muscle cramps, a placebo effect, or a lack of fluid and electrolyte losses because of our experimental protocol. Cramps induced 30 min before pickle juice ingestion lasted almost twice as long (150 s) as when subjects ingested pickle juice, making it unlikely that the cramps dissipated spontaneously. Moreover, subjects experienced moderately intense cramps on ingestion of pickle juice (66% of MVIC EMG activity) and deionized water (55% of MVIC EMG activity). Although a substantial placebo effect can exist when studying skeletal muscle cramp treatments (24), both the primary investigator and subjects were blinded as much as possible to the fluid being ingested. Subjects had their noses plugged while ingesting the fluids and were not told what they were going to drink or any potential effects of the fluid on the electrically induced muscle cramps. However, subjects were likely able to identify one fluid as pickle juice on tasting it. Regardless, it is unlikely that pickle juice’s efficacy can be attributed to a psychological phenomenon. Finally, our subjects lost significant amounts of Na+, K+, Mg2+, and Ca2+ as a result of the experimental protocol. In fact, our subjects lost similar amounts of fluid and electrolytes as athletes who develop EAMC during athletic competitions (32). Therefore, a lack of electrolyte or body mass losses because of our experimental protocol is an unlikely explanation for the pickle juice’s effects on electrically induced muscle cramps.

It is also unlikely that pickle juice’s effects on muscle cramp duration are due to the changes in plasma electrolytes or body fluid chemistry, as believed by 64% (226/353) of athletic trainers who provide pickle juice to their cramping athletes (22). Three reasons refute this hypothesis. First, the amount of electrolytes ingested with 1 mL·kg−1 body weight of pickle juice has a negligible effect on extracellular fluid electrolyte concentrations (<1.5 mmol·L−1) (23). Previous work in our laboratory has demonstrated that no changes in [Na+]p, [K+]p, [Mg2+]p, [Ca2+]p, PV, or OSMp occur after ingestion of 1 mL·kg−1 body weight of pickle juice or water in euhydrated rested humans (23). The results of the present study not only confirm these observations but also extend them to include hypohydrated individuals. Second, 85 s is not enough time for the nutrients in pickle juice to be emptied from the stomach, absorbed by the small intestines, and assimilated into the extracellular fluid compartment. Small volumes of pickle juice (150 mL) require approximately 30 min to leave the stomach in rested euhydrated humans (unpublished observations). The slow gastric emptying is likely due to the high osmolality, low pH, and small volume of the pickle juice ingested. Moreover, hypohydration would, theoretically, further impair gastric emptying (27), making it even more unlikely that the electrolytes in pickle juice were absorbed quickly enough to cause cessation of the electrically induced muscle cramp. Third, even if all the electrolytes present in pickle juice were immediately absorbed and circulated to the cramping muscle, subjects would still have substantial electrolyte and fluid losses. On the basis of the volume of pickle juice ingested, its electrolyte content, and the volume and electrolytes lost during experimentation, pickle juice would only restore 2% (0.074/3.2 L) of fluid, 38% (72.4/190.0 mmol) of Na+, 1% (0.5/34.9 mmol) of K+, 24% (0.9/3.7 mmol) of Mg2+, and 47% (1.7/3.6 mmol) of Ca2+.

Considering these points, we speculate that pickle juice ingestion triggers a reflex, likely somewhere in the oropharyngeal region, which acts to reduce alpha motor neuron pool activity in cramping muscles. Oropharyngeal stimulation is known to elicit simple and complex reflexes that involve the modulation of alpha motor output in the cephalic region (e.g., glossopharyngeal-hypoglossal reflex), upper gastrointestinal tract, and airway (2,19). Chemical stimulation by acetic acid (a primary ingredient in pickle juice) is effective at eliciting these oropharyngeal reflexes (13). Because acetic acid has been shown to elicit reflexive motor responses in the oropharyngeal region, it may not be outside the realm of possibility that its ingestion triggers an inhibitory motor reflex to skeletal muscles undergoing cramp.

We propose two scenarios by which pickle juice ingestion may cause inhibition of a cramping muscle’s alpha motor neuron pool. First, pickle juice may trigger an inhibitory stimulus from a supraspinal source that activates inhibitory interneurons. Activation of these interneurons may postsynaptically inhibit the alpha motor neuron pool of the cramping muscle. In rats, intraperitoneal injection of acetic acid increases the release of inhibitory neurotransmitters (e.g., serine and glycine) in the dorsal horn of the spinal cord (12). Glycine is a specially potent inhibitory neurotransmitter in the spinal cord that may increase inhibitory interneuron activity (e.g., Renshaw cells) or decrease ventral horn neuron activity (9) because these neurons have a high affinity for glycine (37). Suppression of inhibitory neurotransmitters has been implicated as a possible mechanism for cramp genesis (26). Thus, an increase in inhibitory neurotransmitter activity, triggered by pickle juice ingestion, could be involved in the alleviation of electrically induced muscle cramps.

Second, this inhibitory supraspinal signal may override stimuli of an excitatory nature coming from a small group of muscle afferent fibers that were activated by the percutaneous electrical stimulation, muscle contraction/cramp, or both. Although the cramp induction model we used is generally well tolerated (20,34), some pain and, thus, small-diameter muscle afferent (e.g., Types III and IV) stimulation undoubtedly occurred. Activation of these small group muscle afferents can affect cramp generation or sustainability (31). Serrao et al. (31) observed that injection of hypertonic saline into the FHB-induced muscle pain and facilitated the generation of muscle cramp. They concluded that enhanced activation of these small-diameter muscle afferents resulted in an increased susceptibility to cramp. Because we did not apply a proximal nerve block to the tibial nerve, we cannot rule out the possibility that small-diameter muscle afferent activation occurred and helped maintain the cramp.

Regardless of where the inhibition is occurring, pickle juice’s apparent reduction of alpha motor neuron activity is consistent with current thought on the etiology of EAMC. Schwellnus et al. (29) proposed that EAMC were due to neuromuscular fatigue. Neuromuscular fatigue is thought to create an imbalance between muscle spindle and Golgi tendon organ activity, resulting in increased alpha motor neuron excitability. Thus, if EAMC are caused by an imbalance between excitatory and inhibitory stimuli at the alpha motor neuron pool, pickle juice ingestion may cause an increase in inhibition from supraspinal sources, thereby resulting in cramp alleviation.

It is unknown which ingredient in pickle juice may initiate this inhibitory reflex. We propose that it is the acetic acid (vinegar) in pickle juice, not the electrolyte content, which triggers this reflex. Acetic acid has been shown to cause motor reflexes in the muscles of the larynx and pharynx (13). Moreover, there is anecdotal support for acetic acid ingestion also relieving EAMC. Williams and Conway (39) observed in one subject that when vinegar was ingested instead of pickle juice, less vinegar was required to alleviate the EAMC and the EAMC was alleviated faster. Therefore, anecdotally, acetic acid seems capable of alleviating EAMC irrespective of the Na+ content of the drink. These claims remain to be verified scientifically, however, and must be used cautiously because they only occurred in one subject.

In conclusion, pickle juice, and not deionized water, significantly shortens electrically induced muscle cramp duration in mildly hypohydrated humans. How pickle juice decreases cramp duration is unknown; however, we hypothesize that it triggers an inhibitory oropharyngeal reflex shortly after ingestion, which reduces alpha motor neuron activity to cramping muscles. The decrease in cramp duration after pickle juice ingestion is likely not due to the changes in body fluid chemistry, a placebo effect, spontaneous cessation, or a lack of fluid and electrolyte loss because of experimentation. The ingredient in pickle juice that elicits the decrease in cramp duration is also unknown, although acetic acid could play a role in triggering an oropharyngeal reflex.

The results of the present study do not constitute endorsement by the American College of Sports Medicine.

The authors thank Samantha R. Miller for help with data collection and Brigham Young University Graduate Studies for partially funding this research.

Submitted for publication July 2009.

Accepted for publication September 2009.

GetPikled notes: some hyperlinks have been removed, which does not affect the published article in anyway