Posts

Pickle Juice for Cramps: Does It Work?

Medically reviewed by Katherine Marengo, LDN, RD, specialty in nutrition, on September 12, 2019m| Written by Adrian White

What does pickle juice have to do with cramps?

Pickle juice has become a popular remedy for leg cramps over the years — specifically for the cramps runners and athletes get after a workout.

Some athletes swear by it, attesting that pickle juice really works. Still, the science behind it is unclear.

On the one hand, skeptics have doubted that pickle juice works for leg cramps at all. There’s no solid scientific reason yet proving how it works, so some write it off as a placebo effect.

On the other hand, some research suggests that pickle juice is way more effective than a placebo. However, it’s still unclear why.

One long-standing theory for how pickle juice works is its sodium content. The juice contains salt and vinegar, which may help replenish electrolytes. But is this actually true?

Keep reading to learn more.

Does it actually work?

Because pickle juice is such a widely used remedy for leg cramps in the sports world, there’s been some research and studies investigating its effects — though not much.

Very few studies fully explain or prove how it works. Nor do they explain how it doesn’t work, or how it’s just a placebo effect. To date, the efficacy of pickle juice is still uncertain.

Some have theorized that pickle juice’s electrolytes prevent leg cramps after exercise — but one study in 2014 debunked this.

After checking blood plasma levels of nine healthy men for signs of increased electrolytes following consumption of pickle juice after exercise, researchers found that electrolyte levels remained the same.

They also stayed level no matter what the study participants drank: water, sports drinks, or pickle juice. This is because it takes a lot longer for electrolytes to be fully absorbed into the body, and long after a muscle cramp would come and go.

The same set of researchers also did a test on pickle juice for cramps earlier in 2010. They found that it did work to shorten cramp duration. On average, it relieved cramps in about 1.5 minutes, and 45 percent faster than when nothing was taken after exercise.

Cramp relief also had nothing to do with placebo effect. This led to the more intense exploration of pickle juice’s effects on electrolyte levels later in 2014.

How to use pickle juice for cramps

In studies where pickle juice was effective for muscular cramps, researchers used about 1 milliliter per kilogram of body weight. For the average study participant, this was somewhere between 2 to 3 fluid ounces.

To use pickle juice for muscular cramps, measure out the pickle juice and drink it quickly. Taking a rough “shot” is also acceptable.

You can use pickle juice from store-bought cucumber pickles or safely fermented homemade pickles, if you desire. Make sure the natural vinegar acids and salts are present. It also doesn’t matter if the pickle juice was pasteurized or not.

Because it’s thought that cramp relief comes from the vinegar specifically, avoid watering the juice down. Drink it raw and experience the taste. However, this may be difficult for some people who don’t enjoy the taste so much.

The science behind why it works

While it hasn’t been proven yet, researchers posit that pickle juice may help cramps by triggering muscular reflexes when the liquid contacts the back of the throat.

This reflex shuts down the misfiring of neurons in muscle all over the body, and “turns off” the cramping feeling. It’s thought that it’s specifically the vinegar content in pickle juice that does this.

Still, more research is needed to prove if this is exactly how pickle juice works to prevent cramps. While there are no studies proving that pickle juice doesn’t work, or that it’s a placebo, more research supports that it does indeed work by this mechanism.

Does it have to be pickle juice?

Over time, pickle juice has been unique and popular in the way it helps with muscle cramps. Thus far, there haven’t been many other natural foods or remedies to rival it.

Foods of a similar vein haven’t been studied as much as pickle juice for cramps. But they could be just as good.

Could you eat a pickle and have the same effect? Scientifically speaking, maybe.

As researchers supposed in 2010, the cramp relief may have more to do with the vinegar content. If you eat a pickle brined with vinegar, it might also work.

However, eating a pickle isn’t as well-studied as pickle juice.

What about other similar fermented products? Liquids like sauerkraut juice, kimchi juice, apple cider vinegar, and even kombucha are similar to pickle juice. Some have both vinegar and salt content, while others have just vinegar content.

Following the vinegar theory, these may also work. They just haven’t been studied or tested like pickle juice has.

There’s no harm in giving them a try if you consider any of the possible side effects beforehand.

What should I know before using pickle juice?

Some doctors and health professionals warn that pickle juice could possibly worsen dehydration. They say it curbs thirst when you drink it, but doesn’t rehydrate like water.

According to both the 2010 and 2014 studies, this isn’t true. Pickle juice won’t dehydrate you, and it doesn’t curb thirst. It’ll also rehydrate you just as much as water, another similar study in 2013 suggests.

If small amounts are taken — such as 2 to 3 fluid ounces occasionally — there should be little to no health or dehydration concerns.

Pickle juice tends to have a lot of salt, and is thus high in sodium. People with high blood pressure and those who are watching dietary sodium may want to be careful not to take too much pickle juice and use it only occasionally.

Pickles, especially homemade, have high levels of probiotics for gut health and immune system function.

Be careful taking it if you have digestive ailments or disorders. Some pickle juices are high in acetic acids, which can worsen certain symptoms. There are also some other possible side effects, too.

The bottom line

The verdict thus far is that pickle juice can work for leg cramps after exercise. Though there isn’t a whole lot of research on it, the studies so far are quite supportive.

Use of pickle juice to occasionally get rid of cramps post-exercise should also generally be quite safe. If you have any concerns, talk to your healthcare provider before using it.

Originally Published: https://www.healthline.com/health/pickle-juice-for-cramps

Dr. Oz Logo

Health Secrets Dr. Oz Only Tells His Friends

Dr. Oz’s 1-Ingredient Hangover Cure

Pickle juice! After a long night of drinking your body is zapped of water and electrolytes, which is why you get headaches, dizziness and cramping. The salts in pickle juice will help replenish your electrolytes and put your body back in balance. Dr. Oz recommends 1/4 cup first thing in the morning to help ease a hangover.

Originally Published: https://www.doctoroz.com/slideshow/health-secrets-dr-oz-only-tells-his-friends?gallery=true&page=2

Why Every Athlete Should Have Pickle Juice

By Kelli Jennings For Active.com

Muscle cramps can bring even the strongest athlete to his or her knees. And while, there are a number of theories as to what causes cramps—including hydration, bike fit, form and electrolytes—they seem to happen more in races than in training.

Despite the lack of answers as to why cramps occur, a number of remedies have cropped up in recent years. Some of them are probably already in your pantry.

The Research

Research, as far back as several decades ago and as recently as 2013, suggests pickle juice relieves cramps. In the 2013 study, cramps lasted about 49 seconds less when participants drank pickle juice rather than water.

The first assumption is that fluids and sodium are anti-cramping agents.  However, other studies have concluded that the plasma volume and plasma concentrations of sodium remain unchanged after pickle juice consumption, leading researchers to believe something else is causing the cessation of the cramps.

Most experts think it’s the vinegar.

It’s believed that the vinegar triggers a reflex that alerts our brains to tell our muscles to stop contracting and relax, and the muscle cramping is reduced as soon as the vinegar touches receptors in the mouth.

Bring a small amount of pickle juice with you on your next training session (2 ounces is usually enough) or try the Pickle Juice Sports Drink.

Mustard contains vinegar in smaller, but potentially effective amounts as well. However, it has not been as well studied as pickle juice. Packets of yellow and honey mustard are portable on the trail or road, and often easier to consume than pickle juice. Mustard has up to 100 milligrams of sodium per packet and also contains turmeric, which is helpful for muscle soreness and inflammation.

Beyond the cramps, pickle juice and mustard provide other benefits for athletes:

Sodium: Adequate intake can improve hydration and reduce cramping, at least in practice. Just 1 tablespoon of mustard has 200 milligrams sodium and 2 ounces pickle juice has more than 400 milligrams sodium. Just 2 ounces of the pickle juice sports drink has about 225 milligrams sodium.

Glycogen Replenishment: Vinegar, which is chemically known as acetic acid, can provide the acetyl group. This is a fundamental building block for the Krebs Cycle and helps to metabolize carbohydrates and fat to produce energy and ATP for cells. 

If you’re prone to cramps bring a bottle of pickle juice or packet of mustard to your next training session or race. Consume them at the first sign of cramps and you might be able to keep training or racing and full speed.

Kelli Jennings, RD and sports nutritionist, is the owner of Apex Nutrition, LLC.

Originally Published: https://www.active.com/nutrition/articles/why-every-athlete-should-have-pickle-juice

Why Runners Should Drink Pickle Juice

You’ve seen others doing it and cringed—but there are good reasons this salty beverage it make its rounds

By Fara Rosenzweig | 01/07/2016

Move over coconut water, there’s a new beverage taking center stage: pickle juice.

Yes, pickle lover’s rejoice! You may have had to defend your love for the stuff in the past, but you may be ahead of the curve.

A number of studies have confirmed that pickle brine might be more effective than sports drinks at treating muscle cramps. One study from the Department of Health, Nutrition and Exercise Science at North Dakota State University found that athletes who drank the brine noticed the cramps were gone within 85 seconds—about 37 percent faster than water drinkers and 45 percent faster than those who didn’t drink anything at all.

“Pickle Juice Sport is an effective, all-natural recipe made with key ingredients that are scientifically proven to block the neurological signal that triggers muscle cramps,” says Filip Keuppens, Director of Sales and Marketing for The Pickle Juice Company.

The secret? Vinegar. Researchers believe that pickle juice relieves cramps because the acetic acid (vinegar) triggers a reflex shortly after ingestion, which reduces alpha motor neuron activity to cramping muscles. In other words, vinegar sends a signal to the brain to tell the muscles to stop contracting and relax.

Beyond cramping, pickle juice provides a number of other benefits for athletes.

Hydration: Runners sweat out a lot of salt. When sodium levels drop, so does your thirst, which leads to dehydration—bad news. Sipping on 2 ounces of pickle juice can provide 200 mg of sodium, which can replenish the body’s lost fluids and prevent dehydration. Those who run for more than two hours should consider sipping on pickle juice mid-run to keep hydrated.

Hangover cure: We all indulge every now and then. And we certainly regret it the next day with the pounding headache. Hangovers are a result of dehydration. As mentioned above, pickle juice provides sodium that can replenish the body, quenching our thirst. Downing pickle juice after a night of vino can help rid the dreaded headache. Combine it with water to speed up the recover.

Restore energy: After an intense workout your mind and body are depleted. Your energy levels are at a low. To give yourself a re-boost you need to restore exhausted glycogen levels (low carbohydrates). Pickle juice is rich in acetic acid, or vinegar, which can help metabolize carbohydrates to restore energy.

Originally Published: https://www.womensrunning.com/2016/01/nutrition/the-cure-youve-never-heard-of-for-muscle-cramps_52423

Staying on top of your nutrition will help offset the cramping process.

Muscle Cramps: Causes and Remedies Based on Latest Science

CTS Coach Corrine Malcolm lays down the latest science

When it comes to cramping, especially exercise-associated muscle cramping (EAMC) almost everyone has a story. A story about that one time, in that one race, where that one muscle seized. Exercise-associated muscle cramps are defined as painful spasms, and involuntary contractions of skeletal muscles that occur during or immediately post exercise. So, for the purpose of this article, that would exclude cramps that occur outside of the context of exercise, or that are caused by underlying medical conditions such as nocturnal cramps, hypo/hyperthyroidism, and central or peripheral nervous system diseases such as Parkinson’s disease.

Cramping is by no means a new topic in the endurance community, and because EAMC can be debilitating in a race scenario cramping remains a hot topic. There have been decades of research dedicated to trying to figure out how we cramp, why we cramp, and how to stop cramps once they start. Despite our long affair with EAMC, we are not much closer to fully understand their etiology. If anything, our new understanding of EAMC is that they are complicated and likely stem from multiple compounding factors that make any one treatment or preventative technique unlikely to work for everyone, every time.

The Old Theories About Cramping

The advancement that has happened over the past 5 to 10 years however, is a clear move away from the original “dehydration & electrolyte imbalance theory” and an increased focus on the “altered neuromuscular control theory”. Starting in the early 2000s, study after study appeared that looked at hydration status and blood-electrolyte concentrations in endurance athletes, and over and over again there was no significant difference in the hydration status or blood-electrolyte concentrations of athletes who cramped and athletes who did not cramp on race day. Moreover, if you think about it, dehydration and electrolyte imbalances are a system-wide issue, which should cause system-wide muscle cramping. However, EAMC is most commonly localized two one or two major muscle groups and frequently occurs unilaterally. What that means is that EAMC primarily occur in asymmetry (one calf cramps). However, if muscles are cramping bilaterally (both calves) or become generalized/full body cramping, this can be tied more closely to extreme dehydration or hyponatremia, or a more serious medical condition.

What this means is that although we should not completely eliminate dehydration or electrolyte imbalances entirely from the EAMC guidebook, there is likely more going on. Most likely, hydration and fueling problems act as one of the many players that work together to lead to EAMC.

The New Theories About Cramping

The newest theory knocking at the door is the altered neuromuscular control theory. The premise of this new theory is that EAMC is most closely linked to the tenuous relationship between your nervous system and muscles contractions. This theory suggests that EAMC are a combination of several factors coalescing in a perfect (terrible) storm, overexciting your alpha motor neuron, ultimately resulting in a cramp. The variables that are seemingly most important to causing this heightened fatigued state are: inadequate conditioning (particularly for heat or altitude), muscle damage, previous injury to both the cramping muscle or in the compensating muscle group, and certain medications like albuterol, conjugated estrogen, and statins. These variables can easily build off each other, snowballing into that cramp-prone state we’ve all seen happen on race day. These factors also explain why EAMC seem to been seen more frequently at hot races where muscles fatigue more quickly at the same work load, and why athletes with a history of previous cramping are most likely to experience cramping again. This also explains why we almost always see EAMC in races and not during training because we are placing a heavier demand on our muscles than we normally do.

What Happens When A Muscle Cramps

So how exactly do cramps happen and how do we try and treat them?

As mentioned above, cramping is the result of your alpha motor neuron becoming overexcited. Your alpha motor neurons are the largest neurons in your spinal chord and they directly innervate your muscle fibers, the stretch sensor, of your skeletal muscle. Their job is to send the message to your muscle to, “Contract! Contract! Contract!” We only move, pedal, kick, or stride when our alpha motor neurons work in perfect harmony with our Golgi Tendon Organs (GTOs). GTOs are the other half of the contraction-relaxation pattern our muscles rely on.

When alph motor neurons and GTOs are both functioning properly, the GTOs act as the inhibitor to muscle spindle contractions. Basically, your alpha motor neurons and muscle spindles are the active “Contract! Contract! Contract!!!” command and action, while the GTOs are the inhibition to the contraction and allow the muscle to relax. As our muscles fatigue, there is an increased firing from the muscle spindles to keep “Contracting-contracting-contracting!!!” while, at the same time, there is a decreased response from the muscle GTOs to relax. When both of these things happen, we get an over excited alpha motor neuron that causes the contraction to win out time and time again, resulting in a contraction that won’t stop or, as we’ve all experienced, a cramp.

What Muscles Are Prone To Cramping

Muscles that are most likely to experience EAMC are muscles that are contracting in a shortened position. This is particularly true of muscles that cross two joints including your muscles that make up your hamstrings, quadriceps, calves, your biceps brachii, and the long head of your triceps. EAMC are not limited to biarticulated muscles but they are the most common locations of cramping in runners, swimmers, and cyclists. Part of the reason for this is that when muscles have to contract in a shortened position, or through a small arc of movement, your GTOs produce less inhibition to the contraction than normal, due to altered muscle tensions. This can be made worse if you have an injury or an imbalance that causes you to decrease your normal range of motion.

The beauty of this knowledge is that one of the ways to stop EAMC once they’ve started is to stop and give your muscles the opportunity to lengthen. You can do this by stopping and passively stretching the muscle or by moving that muscle through its full range of motion. What you accomplish by doing this is creating a change in tension in the muscle, thereby increasing the GTOs’ inhibitory input to the alpha motor neuron and relaxing the muscle.

So why do people drink pickle juice?

Pickle juice appears to be more than folklore when it comes to stopping EAMC in their tracks. In a now famous 2010 study, researcher Kevin Miller and his colleagues brought pickle juice mainstream. For decades, athletic trainers and coaches had anecdotally been prescribing pickle juice, apple-cider vinegar, and mustard to treat EAMC, but there had been no concrete evidence as to why these various concoctions were stopping cramps. Playing into the electrolyte and dehydration theory, it was initially believed that the sodium in pickle juice was aiding in correcting an electrolyte balance in the cramping athletes. However, the result was happening so rapidly (30 seconds) it was deemed unlikely that the small amount of pickle juice ingested could possibly alter the athlete’s blood sodium concentrations in that short timeframe. What the scientific community began to conclude was that something in the pickle juice was abating the cramps via another mechanism. A new idea emerged that a neural reflex in the mouth, oropharynx, or esophagus could quickly disrupt the alpha motor neuron, stopping a cramp. This discovery has led to the development of several new anti-cramping products.

This new area of research (and the associated sports products) is based on stimulating transient receptor potential (TRP) channels. TRP channels are ion channels in the body that help mediate a variety of different sensations including pain, tastes, hot, cold, and pressure. Many TRP channels that help us differentiate temperatures are also activated by various molecules found in spices, such as capsaicin (chili peppers), menthol (mint), cinnamaldehye (cinnamon), shogaol (ginger), and allyl isothiocyanate (wasabi). Two channels of particular interest to researchers in this are the TRPA1 and TRPV1 channels that are found in our mouth, oropharynx, esophagus, and stomach. Given how fast the acetic acid in pickle-juice works to abate a cramp, it is very likely it stimulates TRP channels above the stomach, which makes this a particularly interesting way to address cramps once they start.

What this means is that strong sensory stimuli activated at these specific TRP channels, by a TRP agonist, or activators for each channel, like capsaicin, could potentially cause the alpha motor neurons to become less excited, which would in turn diminish or stave off a cramp (16). There are two possible scenarios being considered by researchers and companies cashing in on this new theory: 1) pre-ingestion of a TRP agonist might increase the threshold one has to reach in order to cramp, thereby keeping the individual out of a cramp prone state longer, and 2) ingestion of a TRP agonist at onset of a cramp will “trip” our electrical wiring, causing our muscle spindles and GTOs to work in harmony once again by decreasing the excitability of our alpha motor neurons.

What You Can Do About Cramping Today

So what does this mean for us right now? What the literature is currently telling us is that, although there is not yet strong evidence to support the idea that ingesting a TRP agonist pre-activity will successfully stave off a cramp, there is fairly strong evidence that ingesting a TRP agonist at the onset of cramping is likely to help abate the cramp and temporarily prevent subsequent cramps from occurring. I would add that at this time more research needs to be conducted on the most researched TRP agonist, HotShot, and other products containing TRP agonists like mustard, apple-cider vinegar, menthol etc. We are just at the beginning stages of understanding the complexities of TRP channels, the electrical component of EAMC, and their physiological intricacies.

So what can you do right now?

  • Experiment! Anecdote is not science. The brain is incredibly powerful, and placebos can have very real effects on physiological symptoms and performance. It doesn’t mean that something will not work, but the reliability of such methodologies remains unproven.
  • Train yourself specifically for the event you are undertaking. It’s thought that when the demand you put on your muscles does not match up with the training you’ve done, you are more susceptible to cramping, as evidenced by most cramp occurring during a race or event. This applies to athletes who go into events without acclimating to heat or altitude, who go faster than they train, and who fail to prepare for the types of terrain they will be competing on. Nothing can protect you from being underprepared for an event, not even the powerful miscalculation of our own limitations.
  • Work on form, mobility, and range of motion. Muscles most affected by EMAC are those that are confined to a small arc of motion, in a shortened state, and used repetitively. For runners, avoid heavy braking and focus on manipulating your stride length (in training for race day) so that you can maintain adequate hip and knee flexion and extension. For cyclists, make sure you’re seat position is high enough to allow for greater range of motion.
  • Fuel adequately. Glycogen depletion and inadequate fueling can lead to premature muscle fatigue and increase your risk of cramping.
  • Learn to recognize your body’s pre-cramping state and respond accordingly. Slowing down or stopping to stretch cramp-prone muscles could save you from that DNF, or from crawling into the next aid station.
  • Be reflective. Evaluate the training or race-day scenarios that may have brought you to your knees. What factors may have combined to lead to the over-fatigued state? For me personally it’s been a journey of rejiggering my biomechanics and imbalances.

By Corrine Malcolm, CTS Coach

Originally Published: https://roadbikeaction.com/muscle-cramps-causes-and-remedies-based-on-latest-science/